
1

UNIT 3

Stack and Subroutines

2

The Stack

• The stack is an area of memory identified by the

programmer for temporary storage of information.

• The stack is a LIFO structure.

– Last In FirstOut.

• The stack normally grows backwards into

memory.

– In other words, the programmer

defines the bottom of the stack

and the stack grows up into

reducing address range.

Memory

Bottom

of the

Stack

The Stack

grows

backwards

into memory

3

The Stack

• Given that the stack grows backwards into

memory, it is customary to place the bottom of

the stack at the end of memory to keep it as far

away from user programs as possible.

• In the 8085, the stack is defined by setting the

SP (Stack Pointer) register.

• LXI SP, FFFFH

• This sets the Stack Pointer to location FFFFH

(end of memory for the 8085).

• The Size of the stack is limited only by the

available memory

4

Saving Information on the Stack

• Information is saved on the stack by PUSHing it

on.

– It is retrieved from the stack by POPing it off.

• The 8085 provides two instructions: PUSH and

POP for storing information on the stack and

retrieving it back.

– Both PUSH and POP work with register pairs

ONLY.

5

The PUSH Instruction

• PUSH B (1 Byte Instruction)

– Decrement SP

– Copy the contents of register B to the memory

location pointed to by SP

– Decrement SP

– Copy the contents of register C to the memory

location pointed to by SP

B C

SP

FFFB

FFFC

FFFD

FFFE

FFFF

F312

F3
12

6

The POP Instruction

• POP D (1 Byte Instruction)

– Copy the contents of the memory location pointed

to by the SP to register E

– Increment SP

– Copy the contents of the memory location pointed

to by the SP to register D

– Increment SP

D E

SP

FFFB

FFFC

FFFD

FFFE

FFFF

F312

F3
12

7

Operation of the Stack

• During pushing, the stack operates in a

“decrement then store” style.

– The stack pointer is decremented first, then the

information is placed on the stack.

• During poping, the stack operates in a “use then

increment” style.

– The information is retrieved from the top of the the

stack and then the pointer is incremented.

• The SP pointer always points to “the top of the

stack”.

8

LIFO

• The order of PUSHs and POPs must be opposite of each

other in order to retrieve information back into its original

location.

PUSH B

PUSH D

...

POP D

POP B

• Reversing the order of the POP instructions will result in

the exchange of the contents of BC and DE.

9

The PSW Register Pair

• The 8085 recognizes one additional register pair

called the PSW (Program Status Word).

– This register pair is made up of the Accumulator

and the Flags registers.

• It is possible to push the PSW onto the stack, do

whatever operations are needed, then POP it off

of the stack.

– The result is that the contents of the Accumulator

and the status of the Flags are returned to what

they were before the operations were executed.

10

PUSH PSW Register Pair

• PUSH PSW (1 Byte Instruction)

– Decrement SP

– Copy the contents of register A to the memory

location pointed to by SP

– Decrement SP

– Copy the contents of Flag register to the memory

location pointed to by SP

A Flag

SP

FFFB

FFFC

FFFD

FFFE

FFFF

8012

80
12

11

Pop PSW Register Pair

• POP PSW (1 Byte Instruction)

– Copy the contents of the memory location pointed

to by the SP to Flag register

– Increment SP

– Copy the contents of the memory location pointed

to by the SP to register A

– Increment SP

A Flag

SP

FFFB

FFFC

FFFD

FFFE

FFFF

8012

80
12

12

Modify Flag Content using PUSH/POP

• Let, We want to Reset the Zero Flag

7 6 5 4 3 2 1 0

S | Z | X |AC|X |P |X |Cy

•
• 8085 Flag :

• Program:

– LXI SP FFFF

– PUSH PSW

– POP H

– MOV A L

(BFH= 1011 1111) * Masking– ANI BFH

– MOV LA

– PUSH H

– POP PSW

13

Subroutines

• A subroutine is a group of instructions that will be

used repeatedly in different locations of the

program.

– Rather than repeat the same instructions several

times, they can be grouped into a subroutine that

is called from the different locations.

• In Assembly language, a subroutine can exist

anywhere in the code.

– However, it is customary to place subroutines

separately from the main program.

14

Subroutines

• The 8085 has two instructions for dealing with

subroutines.

– The CALL instruction is used to redirect program

execution to the subroutine.

– The RET insutruction is used to return the

execution to the calling routine.

15

The CALL Instruction

• CALL 4000H (3 byte instruction)

– When CALL instruction is fetched, the MP

knows that the next two Memory location

contains 16bit subroutine address in the

memory.

PC

SP

FFFB

FFFC

FFFD

FFFE

FFFF

2 0 0 3

03
20

2000 CALL 4000

2003
4 0 00 [W] [Z]Register

16

The CALL Instruction

– MP Reads the subroutine address from the next

two memory location and stores the higher order

8bit of the address in the W register and stores the

lower order 8bit of the address in the Z register

– Pushe the address of the instruction immediately

following the CALL onto the stack [Return

address]

– Loads the program counter with the 16-bit address

supplied with the CALL instruction from WZ

register.

17

The RET Instruction

• RET (1 byte instruction)

– Retrieve the return address from the top of the

stack

– Load the program counter with the return

address.

PC

FFFB

FFFC

FFFD

FFFE

FFFF

2 0 0 3

03
20

4014

4015

. . .

RET SP

18

Things to be considered in Subroutine

• The CALL instruction places the return address

at the two memory locations immediately before

where the Stack Pointer is pointing.

– You must set the SP correctly BEFORE using the

CALL instruction.

• The RET instruction takes the contents of the two

memory locations at the top of the stack and

uses these as the return address.

– Do not modify the stack pointer in a subroutine.

You will loose the return address.

19

Things to be considered in Subroutine

• Number of PUSH and POP instruction used in

the subroutine must be same, otherwise, RET

instruction will pick wrong value of the return

address from the stack and program will fail.

20

Passing Data to a Subroutine

• Data is passed to a subroutine through registers.

– Call by Reference:

• The data is stored in one of the registers by the calling

program and the subroutine uses the value from the

register. The register values get modified within the

subroutine. Then these modifications will be transferred

back to the calling program upon returning from a

subroutine

– Call by Value:

• The data is stored in one of the registers, but the

subroutine first PUSHES register values in the stack and

after using the registers, it POPS the previous values of

the registers from the stack while exiting the subroutine.

i.e. the original values are restored before execution

returns to the calling program.

21

Passing Data to a Subroutine

• The other possibility is to use agreed upon

memory locations.

– The calling program stores the data in the memory

location and the subroutine retrieves the data from

the location and uses it.

22

Cautions with PUSH and POP

• PUSH and POP should be used in opposite

order.

• There has to be as many POP’s as there are

PUSH’s.

– If not, the RET statement will pick up the wrong

information from the top of the stack and the

program will fail.

• It is not advisable to place PUSH or POP inside a

loop.

23

Conditional CALL and RTE Instructions

• The 8085 supports conditional CALL and

conditional RTE instructions.

– The same conditions used with conditional JUMP

instructions can be used.

– CC, call subroutine if Carry flag is set.

– CNC, call subroutine if Carry flag is not set

– RC, return from subroutine if Carry flag is set

– RNC, return from subroutine if Carry flag is not set

– Etc.

COUNTERS AND TIME

DELAYS

Counter and Time Delays

•A counter is designed simply by loading appropriate number

into one of the registers and using INR or DNR instructions.

•Loop is established to update the count.

•Each count is checked to determine whether it has reached

final number ;if not, the loop is repeated.

Time Delay

Procedure used to design a specific delay.

A register is loaded with a number , depending on the time

delay required and then the register is decremented until it

reaches zero by setting up a loop with conditional jump

instruction.

Time delay using

One register:

Label Opcode Operand Comments T

states

MVI C,FFH ;Load register C 7
DCR C ;Decrement C 4
JNZ LOOP ;Jump back to 10/7

decrement C

Clock frequency of the system = 2 MHz
Clock period= 1/T= 0.5 μs
Time to execute MVI = 7 T states * 0.5= 3.5 μs

Time Delay in Loop TL= T*Loop T states * N10

= 0.5 * 14* 255
= 1785 μs = 1.8 ms

N10 = Equivalent decimal number of hexadecimal count
loaded in the delay register

TLA= Time to execute loop instructions
=TL –(3T states* clock period)=1785-1.5=1783.5 μs

LOOP:

Time Delay using a register pair

Label Opcode Operand Comments T
states

LXI B,2384H Load BC with 16-bit count 10

LOOP: DCX B Decrement BC by 1 6
MOV A,C Place contents of C in A 4
ORA B OR B with C to set Zero flag 4
JNZ LOOP if result not equal to 0 , 10/7

jump back to loop
Time Delay in Loop TL= T*Loop T states * N10

= 0.5 * 24* 9092
= 109 ms

Time Delay using a LOOP within a LOOP

MVI B,38H 7T Delay in Loop TL1=1783.5 μs
LOOP2: MVI C,FFH 7T Delay in Loop TL2= (0.5*21+TL1)*56
LOOP1: DCR C 4T =100.46ms

JNZ LOOP1 10/7 T
DCR B 4T
JNZ LOOP 2 10/7T

Flowchart

for time

delay with

two loops

Flowchart of a counter with time delay

Illustrative Program: Hexadecimal Counter

Write a Program to count continuously from FFH to 00H using

register C with delay count 8CH between each count and

display the number at one of the output ports.

MVI B,00H

NEXT: DCR B

MVI C,8CH

DELAY: DCR C

JNZ DELAY

MOV A,B

OUT PORT#

JMP NEXT

Illustrative Program: Zero to nine (Modulo

ten) Counter
START: MVI B,00H

MOV A,B

DSPLAY: OUT PORT #

LXI H,16-bit

LOOP: DCX H

MOV A,L

ORA H

JNZ LOOP

INR B

MOV A,B

CPI 0AH

JNZ DSPLAY

JZ START

Start

Initialize counter

Display Output

Load Delay register

Decrement Delay register

Is Delay register=0?

Next Count

Is count =0AH?

If yes, Initialize counter
If no, Display Output

